Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Technol Cancer Res Treat ; 22: 15330338231201508, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37735896

RESUMO

PURPOSE: This study aimed to evaluate the efficacy of computed tomography (CT) guided percutaneous cryoablation (CA) for the management of lung metastases in patients with metastatic colorectal cancer (mCRC). METHODS: Retrospective analysis was performed on 38 mCRC patients with lung metastases, who underwent CT-guided percutaneous CA at our center from May 1, 2020 to November 1, 2021. The technical success rate, 1-year local control (LC) rate, recurrence-free survival (RFS) and treatment-related complications were analyzed. RESULTS: The CA procedure was successfully performed in all patients, with a technical success rate of 100%. The 1-year LC rate was 94.7% (36/38), while 16 patients experienced new distant lung metastases during the follow-up period. The median RFS was 20 months (95% CI: 13.0-27.0). The median RFS of patients with and without extrapulmonary metastasis was 15 and 23 months, respectively. Complications were reported in 18 (47.4%) patients following the CA procedure. Pneumothorax was discovered in 15 (39.5%) patients, and five of these patients (13.2%) required chest tube intubation. Two patients (5.3%) presented with hemoptysis during the CA procedure. One patient developed subcutaneous emphysema as detected in the post-procedure follow-up imaging. All patients tolerated the peri-procedural pain well under local anesthesia, and the mean visual analog scale (VAS) score was 2.8. CONCLUSION: Lung CA is a safe and well-tolerated treatment with a satisfactory local control rate for patients with lung metastases derived from mCRC.


Assuntos
Criocirurgia , Neoplasias Pulmonares , Neoplasias Retais , Humanos , Resultado do Tratamento , Estudos Retrospectivos , Criocirurgia/efeitos adversos , Criocirurgia/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/cirurgia , Tomografia Computadorizada por Raios X/métodos
2.
Bioelectrochemistry ; 152: 108430, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37043880

RESUMO

In this work, we demonstrated a novel cancer antigen 125 (CA125) biomarker detection based on electrochemical immunosensor. The biomarker on conductive composite materials of carbon ink/carbon dot/zine oxide (C-ink/CD/ZnO) was employed as an electrode platform by using ITO substrate to enhance the interaction of antibodies (Ab) with supporting catalytic performance of ZnO as a labeling signal molecule. They were a scientist attention for biosensor with chemical stability, strong biocompatibility, high conductive signal, and accuracy. Moreover, the nanocomposite of silver@polypyrrole (Ag@PPy) was used as a potential redox mediator. The labeled construction with Ag@PPy was more accuracy than that of a free-labeled. The created immunosensor was a wide linear range as 1 ag·mL-1 - 100 ng·mL-1 and a low limitation of detection as 0.1 fg·mL-1 under the optimal condition. This suggested that the immunosensor is considered to be an accurate and efficient diagnostic tool for CA125 and other biomarkers detection in actual sample analysis for clinic.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Neoplasias Ovarianas , Óxido de Zinco , Feminino , Humanos , Carbono/química , Polímeros/química , Pirróis , Antígeno Ca-125/análise , Tinta , Técnicas Eletroquímicas , Imunoensaio , Limite de Detecção , Nanopartículas Metálicas/química
3.
Sensors (Basel) ; 23(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36772172

RESUMO

Developing label-free immunosensors to detect ovarian cancer (OC) by cancer antigen (CA125) is essential to improving diagnosis and protecting women from life-threatening diseases. Four types of carbon nanomaterials, such as multi-wall carbon nanotubes (MWCNTs), vapor-grown carbon fiber (VGCFs), graphite KS4, and carbon black super P (SP), have been treated with acids to prepare a carbon nanomaterial/gold (Au) nanocomposite. The AuNPs@carbon nanocomposite was electrochemically deposited on a glassy carbon electrode (GCE) to serve as a substrate to fabricate a label-free immunosensor for the detection of CA125. Among the four AuNPs@carbon composite, the AuNPs@MWCNTs-based sensor exhibited a high sensitivity of 0.001 µg/mL for the biomarker CA125 through the square wave voltammetry (SWV) technique. The high conductivity and surface area of MWCNTs supported the immobilization of AuNPs. Moreover, the carboxylic (COO-) functional groups in MWCNT improved to a higher quantity after the acid treatment, which served as an excellent support for the fabrication of electrochemical biosensors. The present method aims to explore an environmentally friendly synthesis of a layer-by-layer (LBL) assembly of AuNPs@carbon nanomaterials electrochemical immunoassay to CA125 in a clinical diagnosis at a low cost and proved feasible for point-of-care diagnosis.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Nanotubos de Carbono , Neoplasias Ovarianas , Humanos , Feminino , Técnicas Biossensoriais/métodos , Ouro , Imunoensaio/métodos , Neoplasias Ovarianas/diagnóstico , Eletrodos , Técnicas Eletroquímicas/métodos , Limite de Detecção
4.
ACS Appl Mater Interfaces ; 13(5): 6156-6167, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33507065

RESUMO

Li-CO2 batteries have recently attracted attention as promising candidates for next-generation energy storage devices due to their extremely high theoretical energy density. The real application of Li-CO2 cells involves addressing several drawbacks, including high charging potential, poor coulombic efficiency, and low rechargeability. Molybdenum disulfide supported on carbon nanotubes (MoS2/CNT) with various ratios functioned as a cathode catalyst for Li-CO2 batteries. The optimal MoS2/CNT composite achieved a maximum discharge capacity of 8551 mAh g-1 with a coulombic efficiency of 96.7%. This hybrid also obtained an initial charging plateau of 3.87 V at a current density of 100 mA g-1 with a cutoff capacity of 500 mAh g-1. It provided ideal electrochemical stability of 142 cycles at the current densities of 100 mA g-1, which was comparable with that of some precious metal catalysts. This optimized MoS2/CNT was also cycled at 200 and 400 mA g-1 for 112 and 55 times, respectively. Density functional theory calculations demonstrated that the sulfided Mo-edge (s-Mo-edge) on MoS2 materials showed appropriate adsorption strengths of Li, CO2, and Li2CO3. Moreover, joint results of Raman profiles and extended X-ray absorption fine structure spectra elucidated that the catalytic efficiencies of MoS2/CNT hybrids were proportional to the quantities of exposed s-Mo-edge active sites.

5.
ACS Appl Mater Interfaces ; 12(27): 30915-30924, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32539328

RESUMO

The development of science and technology is accompanied by a complex composition of multiple pollutants. Conventional passive separation processes are not sufficient for current industrial applications. The advent of active or responsive separation methods has become highly essential for future applications. In this work, we demonstrate the preparation of a smart electrically responsive membrane, a poly(vinylidene difluoride) (PVDF)-graphene composite membrane. The high graphene content induces the self-assembly of PVDF with a high ß-phase content, which displays a unique self-piezoelectric property. Additionally, the membrane exhibits excellent electrical conductivity and unique capacitive properties, and the resultant nanochannels in the membrane can be reversibly adjusted by external voltage applications, resulting in the tailored gas selectivity of a single membrane. After the application of voltage to the membrane, the permeability and selectivity toward carbon dioxide increase simultaneously. Moreover, atomic-level positron annihilation spectroscopic studies reveal the piezoelectric effect on the free volume of the membrane, which helps us to formulate a gas permeation mechanism for the electrically responsive membrane. Overall, the novel active membrane separation process proposed in this work opens new avenues for the development of a new generation of responsive membranes.

6.
Biotechnol Prog ; 34(5): 1129-1136, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30281955

RESUMO

Fatty acids are valuable products because they have wide industrial applications in the manufacture of detergents, cosmetics, food, and various biomedical applications. In enzyme-catalyzed hydrolysis, the use of immobilized lipase results in high production cost. To address this problem, Eversa Transform lipase, a new and low-cost liquid lipase formulation, was used for the first time in oil hydrolysis with gac oil as a triglyceride source in this study. Response surface methodology was employed to optimize the reaction conditions and establish a reliable mathematical model for predicting hydrolysis yield. A maximal yield of 94.16% was obtained at a water-to-oil molar ratio of 12.79:1, reaction temperature of 38.9 °C, enzyme loading of 13.88%, and reaction time of 8.41 h. Under this optimal reaction condition, Eversa Transform lipase could be reused for up to eight cycles without significant loss in enzyme activity. This study indicates that the use of liquid Eversa Transform lipase in enzyme-catalyzed oil hydrolysis could be a promising and cheap method of fatty acid production. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 2018.


Assuntos
Ácidos Graxos/química , Ácidos Graxos/metabolismo , Lipase/metabolismo , Hidrólise
7.
J Synchrotron Radiat ; 25(Pt 1): 151-165, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29271765

RESUMO

Observing the electronic structure, compositional change and morphological evolution of the surface and interface of a battery during operation provides essential information for developing new electrode materials for Li-ion batteries (LIBs); this is because such observations demonstrate the fundamental reactions occurring inside the electrode materials. Moreover, obtaining detailed data on chemical phase changes and distributions by analyzing an operating LIB is the most effective method for exploring the intercalation/de-intercalation process, kinetics and the relationship between phase change or phase distribution and battery performance, as well as for further optimizing the material synthesis routes for advanced battery materials. However, most conventional in situ electrochemical techniques (other than by using synchrotron radiation) cannot clearly or precisely demonstrate structural change, electron valence change and chemical mapping information. In situ electrochemical-synchrotron radiation techniques such as X-ray absorption spectroscopy, X-ray diffraction spectroscopy and transmission X-ray microscopy can deliver accurate information regarding LIBs. This paper reviews studies regarding various applications of in situ electrochemical-synchrotron radiation such as crystallographic transformation, oxidation-state changes, characterization of the solid electrolyte interphase and Li-dendrite growth mechanism during the intercalation/de-intercalation process. The paper also presents the findings of previous review articles and the future direction of these methods.

8.
Huan Jing Ke Xue ; 33(2): 658-64, 2012 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-22509612

RESUMO

Using human cervical carcinoma HeLa cells, the cell viability was determined by MTT assay after pentachlorophenol (PCP) treatment, the cytotoxicity of PCP was evaluated by detecting lactate dehydrogenase (LDH) leakage rate and total superoxide dismutase (SOD) activity in cell culture medium; DNA damage was detected by comet assay. The results indicated that HeLa cells proliferation was inhibited by PCP and the median inhibitory concentration (IC50) was 66.59 micromol x L(-1); PCP did not induce DNA damage in the concentration range from 6.25 micromol x L(-1) to 50 micromol L(-1); LDH leakage rate increased gradually with the increasing of exposure time when HeLa cells were treated by PCP in the concentration range from 12.5 micromol x L(-1) to 200 micromol x L(-1); SOD activity decreased gradually as the increasing of exposure time when HeLa cells were treated by PCP at lower concentration of 12.25 micromol x L(-1), 17.5 micromol x L(-1), 25 micromol x L(-1) respectively, LDH leakage rate increased significantly at 25 micromol x L(-1) and activity of SOD decreased markedly at 12.25 micromol x L(-1) in HeLa cells following PCP-treatment respectively. Results suggested that SOD and LDH might be regarded as candidate sensitive biomarkers for evaluating toxicity of PCP at low concentration on human and wildlife.


Assuntos
Dano ao DNA/efeitos dos fármacos , Poluentes Ambientais/toxicidade , Pentaclorofenol/toxicidade , Células HeLa , Humanos , L-Lactato Desidrogenase/metabolismo , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA